

DEPARTMENT OF INFORMATION TECHNOLOGY - WAVES RESEARCH GROUP

Prof. Emmeric Tanghe (Emmeric.Tanghe@UGent.be), Prof. Thomas Tarnaud (Thomas.Tarnaud@UGent.be)

COMPUTATIONAL NEUROSCIENCE

ULTRASOUND NEUROMODULATION

- Non-invasive (transcranial) and reversible
- Short wavelengths **→** High spatial accuracy
- Low intensities **→ Good safety profile**
- Capability to select for different neuron types (e.g., inhibitory vs. excitatory neurons) \bullet
- Spatial interference and transducer arrays allow **targeting of deep brain structures** \bullet

DEEP BRAIN STIMULATION

Treatment of epilepsy and Parkinson's Disease

- **Goal:** Reverse abnormal firing behavior associated with neurological diseases \bullet
- Simulation of electromagnetic field generated by the neurostimulator: FEM, Realistic discretized anatomical models
- Simulation of neuronal response: Hodgkin-Huxley formalism, Cable Theory (equivalent electrical

Computational modeling and experimental validation: to elucidate the underlying mechanisms and to optimize protocols

circuit representation of neuron), Synaptic Connectivity to form neuronal networks

- Genetically express opsins (light sensitive ion channels) into neurons -> Cell type selectivity
- Use of light
 → High temporal precision
- Selective inhibition or excitation

$C_{\rm m} \frac{dV}{dt} = -I_{\rm Na} - I_{\rm K} - I_{\rm A} - I_{\rm T} - I_{\rm L} - I_{\rm CaK} - I_{\rm l} - I_{\rm ChR2}$

AURICULAR VAGUS NERVE STIMULATION

What?

- **Stimulation** of the auricular branch of the vagus nerve using needle electrodes
- **Treatment for** epilepsy, major depression, heart failure ...
- Much **less invasive** compared to implanted cuff electrodes in the neck

Model of needle electrode (left) and typical electrode positioning during auricular vagus nerve stimulation (right)

Why numerical modeling?

\rightarrow Insight in role of different stimulation parameters

(e.g. pulse duration and waveform, electrode position, electrode shape...) \rightarrow Which fibers are stimulated, not stimulated or blocked for different settings? \rightarrow **Optimization** of therapy by maximum stimulation of target fiber types while avoiding stimulation of pain fibers

Blocking threshold (mA) for small electrode displacements

To illustrate: dependency of stimulation threshold on axon diameter (realistic heterogeneous model) and dependency of the threshold for cathodal blocking on small electrode displacements (straight neuron, homogeneous model)

Contact

Tom.Plovie@UGent.be Laila.Weyn@UGent.be Joaquin.Gazrodriguez@UGent.be

Thomas.Tarnaud@UGent.be Emmeric.Tanghe@UGent.be

https://www.waves.intec.ugent.be/

lmec